LogiGear — m
] oeeee |

Test Design for Automation:

Anti-Patterns

These are 8 Anti-Patterns to watch for in Automation and How to Fix Them:

modules” that look like spreadsheets,

In the “Action Based Testing” method, tests can be organized in easy to manage"test

which we edit and manage in our tool,
TestArchitect. The test modules contain test cases that are written as sequences of

“actions,” which are spreadsheet lines with an action keyword and zerc or more action

arguments.

What is an Anti-Pattern?

An Anti-Pattern is a situation to look for in a test that potentially can be harmful for maintainability and scalability.

01

Itis a practice considered
harmful, “the opposite of
a pattern”.

An Anti-Pattern has 4 key factors:

02 03

The Anti-Patterns often
occur in combination and
may have some overlap

Itis a pneumenic. These
catchy names are helpful for
memory recall and are

04

In the case of automated tests,
Anti-Patterns may lead to risksin
areas like: effectiveness, efficiency,

helpful for spotting or aswell.

describing the risk in each
Anti-Pattern.

readability, manageability,
maintainability.

Enter Enter Click Click: Many tests have been
designed as long sequences detailed Ul steps. This
) makes it difficult to manage and maintain those
tests. For example, it will be hard to factor the
‘M impact of changes in the application under test
into the tests.

Interaction Heavy: I've seen in many projects that
testers focus only on the interaction, and not
much, if any on business tests. This makes the
tests shallow which results in missing potential
business level problems, thereby making the test
interaction heavy.

No-life/Lifeless: Missing life cycle steps of business
objects. Most applications work on "business objects,
like orders, inveices, products, customers, ete. These
- objects have their life-cycles in the application, like
creation, update, retrieval and closure. However, the
tests for such life-cycles are often scattered and as a
result, are both hard to find and incomplete.

w

Lame: No depth or variety, no testing techniques
used. Time pressure and other factors often
result in shallow test cases that don't challenge
the application much, The tests will also be
boring to read.

Rather than trying to optimize bottom-up, create
a high-level test design first. Then for tests with a
business scope make sure the steps and matching
actions are also at business level,

A main distinction that testers should make
recommend that testers make is between “business
tests” that focus on business objects, rules and
processes on one hand, and “interaction tests” that
focus on the interaction with the application.

Life cycle tests are usually not hard to design.
Identify the business objects, and for each of
them identify the operations on them, including
variations (like canceling an order).

Design life cycle tests as business tests, not
interaction tests.

Try to think as a true “tester”, somebody
who wants to break things. Applying
testing techniques and interactions with
various stakeholders can help you in this
process. Testing should be fun.

Clueless: Mo clear scope for the tests, A very
common situation is lack of scope for tests. The
tests then are hard to find and updated if there are
application changes, and may do work that is also
done in other tests.
Over-Checking: Checks not relevant for the scope.
Since test designers often follow an approach of
steps with an expected result for each step, tests
do many checks that do not fit the scope of such
tests. These checks are unnecessary and probably
over-lap similar checks elsewhere which end up
cluttering result statistics.

Cocktail: Interaction tests mixed with business
tests. Even if tests are testing business
functionalities, like business object life cycles and
business rules, calculations and processes, they are
often mixed with tests on interaction details,
resulting in a convoluted and hard to maintain mix.
A common example is to describe a log-in process
in detail in all tests that start with a login.

Sneaky Checking: Checks hidden in actions. Even
though it is good to have business level actions
that hide unneeded details for many of the tests,
try to avoid hiding too much. In particular, checks
should be explicit and visible in the main test (the
test modules), at the appropriate level of detail.

How to Avoid Anti-Patterns:

Design with clear scope for tests (esp. test modules).
Understand the scope, and try not to deviate from it.

Start with clear test design to aveid this
Anti-Pattern. And then, when developing
the tests, resist the temptation to check
after every step. Only checks that fit the
scope are welcome.

This Anti-Pattern is usually a symptom of
other Anti-Patterns like “clueless” so pay
attention. A good modular test design can
provide the direction you need to avoid
cocktails.

Try to avoid hiding too much. Design checks
so they are explicit and visible in main test at
the appropriate level of detail.

An outsider should be able to understand
what is being tested by just looking at the
test module, without a need to review the
implementations of the individval actions.

Being attentive in recognizing test design choices that can potentially complicate automation (and possibly testing quality) can help to make tests
more concise, effective and easy to maintain. The Anti-Patterns described in this infographic may help spot issues earlier. A good way to avoid them
altogether is to have a well thought out design and organization of the tests from the beginning.

Steps to fix your tests if you find an Anti-Pattern:
1. Agood first step is to look at the overall test design.

2. Make a list of your tests and see if you can determine test modules with clear, unambiguous and differentiated scopes.
3. Then within each of these test modules, make sure to stay within the differentiated scope you established in step

Final note: Anti-Patterns are a tool to discuss practices. If you communicate about Anti-Patterns, be careful that the other party understands the

concept. A sentence like “this test is lame’ ” may not always come across well...



