
Leverage
Test Automation
effectively with

TABLE OF CONTENTS

01 Executive Summary

01 Preparation Stage

03 Execution Stage

09

10

11

11

Best practices

Useful Resources

Customer Success Programs

Conclusion

01

This Implementation Guide outlines major steps to

empower testers with diverse skill sets and

succeed at test automation with TestArchitect™.

With some tailoring, you can turn your investment

into tangible profits as quickly as possible while

most importantly, causing minimal disruptions.

The Preparation Stage describes related parties

you should involve, how to deploy TestArchitect

component by component, and the available

EXECUTIVE SUMMARY

PREPARATION STAGE

license schemes of which you can make use.

The Execution Stage shows you the possible roles

on a team, which automation skills your team

should master, test activities and test assets you

will manage. The rest of this guide lists the best

practices and other useful resources and services

which you can leverage to succeed with

TestArchitect.

Involving These Parties
The table below describes the parties who will most likely take part in this initiative.

Role Involvement

Testers &
Automation

Engineers

Developers

Operations (IT)

Product
Management

Line Managers

Responsible for learning new automation skills, migrating existing test artifacts,
building new test assets with the new methodology, and ultimately, making the most
of the new framework

Responsible for ensuring testability of the application under test (AUT), helping testers
in deploying a complete Continuous Testing process, and extending the automation
libraries if need be.

Responsible for setting up the network infrastructure, assigning domain names,
managing and maintaining important components, such as Repository Server,
License Server and back-up servers.

Responsible for adjusting the team’s backlog to accommodate the transformation
since it almost certainly affects the delivery capability of the team as a whole.

Responsible for introducing new work processes and roles, reallocating resources,
coaching existing and new members in their new endeavors, etc.

testarchitect.logigear.com

02

Deploy TestArchitect
Deployment Model

Install TestArchitect

The following picture illustrates a typical network topology for a small test team.

The Deployment Model consists of the following TestArchitect components.

NOTE: All machines must be in the same network (LAN or VPN)

IDE

Automation Plug-ins

Test Controller

FLOATING
LICENSE

NODE
LOCKED
LICENSE

RUN ONLY
LICENSE

SERVER
Repository

Server

License
Server

TCP/IP
IDE

Automation Plug-ins

Test Controller

Automation Plug-ins

Test Controller

CLIENT

CLIENT

AGENT
FOR

EXECUTION

Component Description

Repository
Server

License
Server

Client
machines

Execution
machines

The main database storing all of your test assets. One server machine should be
dedicated to host this component.
NOTE:
• A back-up Repository Server is also desirable in case the main server stops working.
• Repository Server also hosts other TestArchitect components such as Lab Manager
and Dashboard

Responsible for issuing licenses to Client machines and Test Controllers. License Server
Control Panel displays license information and status as well as provides features to
manage the License Server instance and purchased licenses.

NOTE: A back-up License Server is also desirable in case the main server stops
working

One or more work stations with TestArchitect Client (IDE) installed, on which testers
can author and execute tests, review results, generate reports, etc.

Real, virtual or cloud machines with TestArchitect Test Controller and necessary
automation libraries installed. By default, Client machines can also execute tests.

NOTE: All of TestArchitect components above are packaged in only one installer for easy installation. For the step-by-step
instruction, refer to Installation Guide and License Server Installation Guide

testarchitect.logigear.com

03

EXECUTION STAGE
Build Your Team

To monitor license usage and plan for purchasing new licenses if necessary, it’s good to understand the

available license schemes in TestArchitect.

In Action Based Testing (ABT),
there are several overlapping roles
with different skill sets ranging from
Domain Expertise to Technical
Expertise.

• Subject Matter Expert

• Business Tester

• Technical Tester

• Automation Engineer

The below Venn diagram illustrates
the responsibilities of these roles.

These roles can be described
briefly as follows.

Scheme Meaning

Floating

Node-locked

Run-Only

May be shared among members of an organization and is not tied to any one
particular person or machine. At any given point in time, a single floating license
can only be used by one host.

E.g. if your team has 5 members but only 3 floating licenses, only 3 members can
use TestArchitect concurrently.

Is locked to a specific machine permanently. When that machine is not using the
node-locked license, the license goes unused. A node-locked license can be
transferred from one machine to another, but the frequency of such transfers is
limited.

This license scheme is dedicated for execution of tests and reporting of results. You
cannot develop tests or manage test assets using the IDE with this license scheme.

Types of Licenses

Assign Roles

testarchitect.logigear.com

04

Component Description

Subject Matter
Expert &

Business Tester

Technical Tester
& Automation

Engineer

Client
machines

Test Lead

Responsible for defining Business Objects, Business Processes, Test Objectives,
designing Test Modules, Test Data, and working with Automation Engineers to
develop High-level Actions, as well as a shared understanding of Business Objects
Responsible for designing test cases and validating test results. This role is not
mandatory but it’s worthwhile to invest in a team of Subject Matter Experts if testing
requires intensive domain knowledge (e.g. oil and gas drilling)

Responsible for working with Testers to implement both High-level and Low-level
Actions, capturing Interfaces, extending TestArchitect’s Action Library, and creating
other logistic tools for Continuous Testing if need be

One or more work stations with TestArchitect Client (IDE) installed, on which testers
can author and execute tests, review results, generate reports, etc.

An Additional role which may arise during the team building process. Responsible for
coaching other Testers, providing test plans, module planning, and reviewing the test
assets

Automation
Lead

Additional role which may arise during the team building process. Responsible for
coaching other Automation Engineers, providing automation plans, and reviewing
automation assets

Skill Description Role

ABT
Fundamental

Concepts
All

Subject
Matter

Expert &
Business Tester

Subject
Matter

Expert &
Business Tester

High-level
Test Design

Test
Development

Ability to understand ABT’s fundamental concepts, such as Test
Module, Action, Interface Entity and so on. Since ABT methodology
is embodied in TestArchitect, whoever works with TestArchitect test
assets should possess this skill. Learn more about ABT here

Ability to analyze the AUT’s business logics to define Business
Objects (e.g. “account”, “promotion”, etc.) and Business Processes
(e.g. “rent a car”, “check out my cart”, etc.), break down test
requirements into Test Objectives and assign those Test Objectives
to Test Modules in a way that facilitates maintainability and
scalability.

Ability to write detailed test steps to achieve the predefined Test
Objectives of a certain Test Case. These steps are later translated
into Actions (High-level, Built-in Or User-coded Actions). The main
goal is to verify various aspects of the AUT with emphasis on the
business logics.

The below table explains the automation skills which each corresponding role should develop to perform
their tasks efficiently.

Acquire Automation Knowledge

testarchitect.logigear.com

05

Skill Description Role

High-level
Action

Definition
All

All

All

Technical
Tester &

Automation
Engineer

Technical
Tester &

Automation
Engineer

Technical
Tester &

Automation
Engineer

Interface
Capturing

Action
Library

Extension

Test Execution
& Result
Analysis

Continuous
Testing

Test
Management

Ability to craft reusable High-level Actions based on pre-defined
Low-level Actions (Built-in or User-coded actions). A High-level
Action can be either an operation (e.g. “log in”, “rent car”, etc.) or
verification point (e.g. “check balance”, “check available cars”,
etc.)

Ability to understand the AUT’s GUI hierarchy to choose non-volatile
properties which can uniquely identify the GUI controls of interest.
Without Interface capturing, no automation tools including
TestArchitect are able to find the controls the test wants to interact
with. Mastering Interface Viewer is crucial in this skill.

Ability to extend TestArchitect’s Built-in Action Library by
implementing new User-coded Actions. In addition to basic coding,
this skill also consists of insights into how TestArchitect works to make
full use of its components, such as Engine API, Automation API, etc.

Ability to run the tests on demand and analyze the run results.
Everyone on the team should possess this skill. TestArchitect already
provides an out-of-box toolset for productive result analysis:
Screenshot Recorder, Debugger, Result Comparison

Ability to integrate TestArchitect with other ALM tools if any, e.g.
Team Foundation Server, HP ALM, Zephyr, etc., set up automated
nightly runs and the execution environments (real machines, VMs,
cloud instances, or mobile devices), build logistic tools for
Continuous Testing, etc. This skill requires basic coding and
familiarity with TestArchitect components such as TAUtilities. At least
one member on the team should master this skill. That best
candidate would be an Automation Engineer.

Ability to understand TestArchitect’s test management tools, such
as Dashboard, Lab Manager, and Reporting to monitor the
project’s health in real time

Subject
Matter

Expert &
Business Tester

Test Data
Management

A tester must design quality Test Data to manipulate the desired test
condition of the AUT and assert its corresponding state. In
TestArchitect, Test Data is stored in Datasets.

testarchitect.logigear.com

• If your team consists of manual testers and they want to
transit to a Full-stack Automation Engineer, refer to this article
for more details.

• If you need help in building your test team, you can employ
LogiGear’s Customer Success Programs (learn more).

NOTE

06

Deploy TestArchitect
Your team is now ready to apply their newly
acquired automation skills and incorporate new
ABT test activities into their Software Development
Lifecycle. The below infinity diagram describes

Phase Description

Plan

Code

Test

Continuous

Product Management (Product Owner), Business Testers and Subject Matter Experts
help define the test objectives & test modules based on the team’s backlog (list of
user stories)

• Business Testers with the help from Subject Matter Experts develop test modules
(detailing out test steps to achieve a test condition and assert certain states of the
AUT as defined by the test module’s objectives)

• When more UI designs are finalized and implementations become available,
Business Testers add some more test modules to test the application’s GUI, navigation
and other low-level interactions.

• Technical Testers & Automation Engineers capture interface entities

• Technical Testers & Automation Engineers with the help from Subject Matter Experts
and Business Testers define reusable actions and user-coded actions if need be

• As soon as a test module is fully automated, everyone can run the tests and collect
results

• Anyone on the team reviews the run results and choose baseline results

• Any Tester files bug reports based on the run results.

• The team collaborates to gradually increase test and automation coverage to
ideally 100%

• After developers fix a bug, a tester re-runs the related tests to verify the fix

Steps described in the Test phase are repeated automatically

testarchitect.logigear.com

essential ABT test activities in conjunction with
traditional software development phases. With the new
accelerated test development speed, your tests can
be automated within the same iteration (sprint) as the
development team.

07

Testing (Build)

Whenever the CI process is triggered, ideally for every code commit. The build’s
health is monitored through test management tools such as TestArchitect Dashboard,
Reporting and Lab Manager.

At the end of the development iteration, the team:

• Reviews and closes done user stories and tasks

• Holds a Retrospective meeting to consolidate lessons learned if need be

Operate
Once the development iteration is done, the application is deployed to production
environment and starts its operation. Meanwhile, the team prepares for the next
development iteration.At the end of the development iteration, the team:

• Reviews and closes done user stories and tasks

• Holds a Retrospective meeting to consolidate lessons learned if need be

Maintenance

During the maintenance phase, the team troubleshoots and fixes issues reported
from production environment if any. They can also start a new development iteration
in which they can:

• Reuse existing test assets

• Rerun developed tests

The team can also spend time on maintaining the test framework:

• Constantly refining the test modules to adapt to new changes

• Rerun tests on a regular basis to make sure they are “alive”. A test not frequently run
is a liability, not an asset.

• Back up repositories

• Monitor resource consumption on server machines to:

 o Restart them if they are running continuously for too long

 o Upgrade hardware if need be

• Clean up cache

• Delete obsolete results on repository or junk local results

testarchitect.logigear.com

Best practices
• Consider your test assets as deliverable
products. In Action Based Testing, there are
three related but distinguishable product
life-cycles, each with its own deliverables:

• Test modules can be developed at any
convenient time in the development cycle.
Typically it is good to start a test module only
when the underlying system knowledge is

available. For higher level tests with business
functions this can be fairly early, but UI
specific tests have to wait until the UI design is
in a relatively final and stable stage.

• Modules should only be executed when the
system under test is "ready" for them. For
higher level modules like functional tests, this
means that the lower level tests should have
passed, in other words the UI should be
stable.

• Aim for the highest degree of test and
automation coverage

• Aim for a close cooperation between the
members of the team. There should be
agreement on what approach to use

o system development (main product:
software)

o test development (main product: test
modules)

o automation development (main
product: working and reusable actions)

08

Organize Test Assets

Concern Solution

Co-location

Project
Subscription

Result storage
and sharing

If the team is dispersed across multiple geo-locations, you’ll need to design a
sustainable physical and logical infrastructure. For instance, from each geo-location,
it’s recommended to set up one physical server hosting both replicated Repository
Serer and License Server connected to a primary server (through VPN) for faster
access speed (see the illustration below)

Project Subscription is a signature feature of TestArchitect. By subscribing, the team
can avoid effort duplication and allow a TestArchitect project to reuse all test assets
(actions, data sets, interface definitions, picture checks, etc.) that already exist in
other TestArchitect projects (learn more).

Typically only one final result is stored in the shared repository for a particular revision
of a test module with each version of the system under test.

It’s not recommended to add ‘testing’ or ‘debugging’ results into repository.
Otherwise, the size of your repository will be unnecessarily large

TestArchitect test assets can be categorized as follows:

It’s normal for big and long-term test projects to set up several TestArchitect repositories, TestArchitect projects
and subscribe one project to another. The table below lists out the basic concerns which need to be taken
into consideration when scaling your test project.

testarchitect.logigear.com

09

BEST PRACTICES

It’s always good to have centralized
conventions and best practices for your
team, e.g. how to break down test modules,
write tests, name variables, execute tests,
script review process, etc. Doing so
standardizes the workflows, thereby
increasing efficiency and scalability.

US HEAD
QUARTER (LAN)

VPN or
PUBLIC IP

ReplicateData

Replic
ate

Data

VIET NAM (LAN)

INDIA (LAN)

Composing and Sharing
Best Practices

Due to the fire-fighting pressure from the release
schedule, there are times that your team needs back
up by another internal or outsourcing team.
• Your team can catch up with the release cycles and
get automation testing “done”
• One outsourced facility can support multiple teams,
smooth out peaks and valleys
• Allow sprint teams to focus on development priorities
• Team is responsible, and decides if, what and when
to outsource

Offload to Catch up

testarchitect.logigear.com

10

USEFUL RESOURCES

Source Description

TestArchitect
Online Help

Video
Tutorials

New
TestArchitect

Releases

A comprehensive user manual online containing various topics.

Get hands on with TestArchitect’s video tutorials

There are regular releases and updates of TestArchitect. Be sure to check them out

A well-engineered framework and the best test
design in the world won’t amount to much if
your developers don’t play their part in promot-
ing testability of the application under test. If at
all possible, testability should be one of the first

Invest In Testability of
the System under Test

requirements of a new feature. In particular the devel-
opers should decide early on automation ID's for UI
entities and elements. Interface definitions can then be
created early on without even the need of Interface
Viewer, and they will remain largely current throughout
the sprint. Learn more here

Automation

Sprint
Test Definition &
Development

Additional
Test Development

Additional Automation
Test Development

Automation

Automation

Sprint
Test Definition &

DevelopmentTeam

Facility

testarchitect.logigear.com

11

CUSTOMER SUCCESS PROGRAMS

CONCLUSION

Source Description

Responsive
Product
Support

Training &
Consulting

Automation
Delivery
Services

Our around-the-clock technical Product Support team makes sure your questions get
answered promptly. Post your questions on TestArchitect Support Portal. You can also
access our knowledge base containing TestArchitect’s tips and tricks. Besides, you
can choose among our various Customer Support services to sign up for a package
which best suits your team’s needs.

Contact information

Phone: +1 800 322 0333

Email: support@logigear.com

URL: http://testarchitect.logigear.com/support.html

Our consultants review your testing objectives and processes and develop the plan
to maximize your value from test automation.

Leverage our automation delivery services to reduce your upfront automation effort,
ongoing or on-demand, to achieve the full potential of automation

Automation
Extensibility

Services

On-demand development services for special automation needs such as legacy UI
controls, no-standard protocols, integrations with ALM & TCM tools

Hopefully this Implementation Guide has helped you
to grasp a holistic view of the whole transformation
and you’re now ready to integrate TestArchitect
with your team’s daily work.

testarchitect.logigear.com

