@) TestArchitect Explore Tree

TestArchitect Explorer Tree shows all open repositories,
their respective projects, and all the items within each

project.

@ Test Module

A worksheet containing test requirements
and test cases which narrowly define the
scope. Test modules should be designed to
run independently from each other, while
the test cases within a test module can
have dependencies among themselves.

€@ Defined-Action

User-defined actions are actions that you
create in TestArchitect's Action Based
Testing language, and consist of sequences
of actions that typically relate to a single
business logic function in the application
under test.

@ Built-In Action

TestArchitect includes a library of built-in
actions to perform a myriad of functions.
There are three categories of built-in
actions: System actions, Test Support
actions and User Interface actions

@ Interface Entity

A TestArchitect project item used to
represent a single dialog box, window, or
full-screen item of the AUT's GUl interface. An
interface entity appears in the TestArchitect
explorer tree as a child of an interface.

e A B C £ F
login 1 oq datio
~ Testarditect = ACTION DEFINITION 9
-5l SampleRepository (ocalhost) [administrator] A 2
) o nenta Defined-Action (Template) 5| OssecTves
-] Tests 4 name default value description 4 | test objective TO16 Access is denied with expected message handling for an invalid login
e Arcﬁmbased Testing Basics 5 | argument username john The value of usemname 5 |test objective T017 Access is granted for a valid login
O Data Driven Tests
6 | argument password The value of password 3
£-/C Functional Tests =
" - Caleulation 2 7| INITAL Seting up)
: . 8 8
g Input Validation
9 window control value 9 | config T t M d I (T m I t )
10 | enter login usernome  Zusemome © est ioduie (Tempiate
11 | enter login password #password start application
2 12
£ Data 13 window control 13 | TEST CASE TCO01 Invalid login (Access denied)
7 Actions 14 | click login login 14| test objective T016 Access is denied with expected message handling for an invalid login
-8 ¢ £ 9 )
ar
15 15
128 Order
; {3 Others L 16 ~ 16 |step 1. Login with in... Error message displayed
7 back to home ] [ — 7
7 check control state 18 username password
-7 check message i john 54321
[ £l J
7 dose application ACTION =
oZp.conf — ¢ 21 window messag button
2 oan ¢ Name: ot | car rental messa..[fovalid Usera... ok
=7 Qe sppication ame: start program T =
I Interfa
e e T imo e i Built-in Action Proper o i s i
[EH Car 25
(03 Order 2% username password
7 confirm reservation 27 |login noone
™ date and location 28
o 4
el 29 window message button
Neme Defauit Value Description Type Modifier 30| check message car rental messa... Invalid UserNa... ok
program fThe program to be started, prepended with its execution pa... [String o 31
32 |step 3. Login with in... Error message displayed
Test Suites L 33
3t Bugs 34 username password
[E] Picture Checks 35_|login noone nothing
=) Results 36
>>L0§AL RESULTS << 37 window message button
(/3 Action-based Testing Basics 38| check message car rental messa... Invalid UserNa... ok
IE Historical result =)
Car Rental - Mobile - - -
1) Music ibrary 40 | TEST CASE TC02 Valid login (Access granted)
2-[5) Scripting techniques sample 41| test objective T017 Access is granted for a valid login
75 Scrum Board 2
1 Systems & Platforms Notes: For the exacution path, you may use the standard execution file path format of 43_|login
7 Built-In Actions the operating system (e.g., in Windows: C:\Program Files\Acme\foo.exe). The vy
5[G System execution file path may also use the forward slash delimiter (C:/Program - g
@-I0A Clipboard Files/Acme/foo.exe), regardless of operating system. Further notes are available window
im C:—n m:n e in the Help topic for this action. 46| check window exists welcome
47
48| FINAL Cleaning up
®
Ic3 Device 50 window
{03 Files and Folders = 51 | close window welcome
5103 Keyboard = Car Rental-Login =
{cA Mouse oy INTERFACE ENTITY -
IcH Operating System i i i i -Logi
E a m- g S ; interface entity setting title Car Rental-Login vsername fonn | Y
|
{3 Test Support | NTITY car rental message
5[0 User Interface ; interface element : r;:me :J:::: iaop(i:n Password | | ] INTERFACE E 9
3 Administration N o 9 ﬁ 2 |interface entity setting title Car Rental
-/ Tool Profiles 6 | interface element clear button Clear
-/ External Tool 7 3
&6 Bug Tracker 8 ta name ta dlass caption 4 ta name ta class name
b gh, Jra 9 |interface element Iblusername  label User name P .
i = 5 |interface element message label OptionPane.label
55-/23 Test Management 10 | interface element bl password label Password = 9 P
il Quality Center o
! ;:::‘;““"da‘mnse"’e’ 2 ta name ta dlass label 7 ta name ta class caption
8 LoAP ool ﬁ interface element password passwordtext  Password 8 |interface element ok button oK
. " :3:1: Server = 9 |interface element yes button Yes
E Functional Groups 16 | interface element In te (o ] M ap em p I a te) 10 | interface element no button No
5[ Users 17
[=] Fields -~ < . »

O AUT

The application that is being
tested for correct operation.



o Create a Test Module with Test Module template 9 Write Action Line using Defined Action or Built-in Action

TEST CASE TCO01 Invalid login (Access denied)
1 Login Validation test objective TO16 Access is denied with expected message handling for an invalid login
:
i E;'Sfj'(’iv:f( T016 Access is denied with expected message handling for an invalid legin 1. Login with invalid password Error message displayed
o o I o SO
7| INmIAL Setting up.
8
9 | config y
11_| start applieation car rental message Invalid UserName or Password ok e
Ul | R e -
Test Module Fo e Tolo e boanemeeoes e r i ey 2 Loginwith il vt name e mesiag dplyed o
5
5
— ObJectwes 5_esin o s window nessage button
2 ndow message butten 30| check message car rental message Invalid UserName or Password ok
£l step 3, Login with invalid user name and password Error message displayed
i+ 24| step 2.Log rmessage displayed
— Initial - setup 5
27| legin noane 35 | login noone nothing
B %
— Test cases | creckmusage vt e e ok 2 window message button
E 38 | check message car tental message Invalid UserName or Password ok
32 |step inue Errormessage displayed 39
5
— Final - cleanup e
5 0 Activity Action Line 0 Argument Name
| TesT Case Tco2 Valid login (Access granted)
5
« P . .
“ G Verification Action Line G Argument Data
46| chesk window eists welcome
L
e S
S
b = e o Action Name (Verb or Verb + Object)
L = |
o ) ;

o Action references Interface Entity (Map) to communicate with Ul of AUT
Use the Interface Viewer tool to capture AUT Ul information and store it in Interface Entity (Map)

[

[ Interface Viewer - LOGI
C R I L - File Edit View Tools Settings
‘ a r enta - ogl n B2z 0 e DR interface entity setting title. Car Rental-Login
o | [rerroere el P e tice et oo baton lagi.
B st Name vakie 7| 7a Name TAGsss interface element clear button Clear
3 Ernwmm" [¥] cantion Login Idear Jbutton
47 LOGIN (Car Rental-Login) lanchor nassgned logn ftton - '
S B wien o = = _ ta name tadass eaption
lchid count 15l user name el !n\tﬂn(e element. Ibl user name label User name.
CLEAR (Clear) ldescrption o pasoword I interface element bl passiord label Password
—~ -} label [ {enabled rue [ luser name [textbox
Ser name jonn 7 LUSER NS s o) ebolpor bt © s name o s el
Py /' LBL PASSWORD (Passiord) [CTheht 26 | interface element password password text Password
-8} layered pane [left 57
<> nullsyered?ane &) oon___________| ta name ta dass deseription
pared JJ CIE Ty Kution interface element user name textbox User name.
a Eune Enwvae,«eeusu,vsble,n "
[tooltip.
Password e s | .
o (o ogn perties Comparison
oo pun — ‘ e csae Interface Entity (Map)
-8} rootpane. fwidth 68 2
<> root pane 5
-3 textbox
/' USER NAME (User neme) 24
. 5
e Viewer | =
i 27
- »
Login Clear i | 5
| H I E]
il E
[ =
33
| Ooined vatue: Vatue of the property as defined by =
| the stected intartace tomant.
H Show fewer properties | * Cument value: Actual (ust-captured) value of the 35
‘ i ' |promery of tre element selected n the tree %]
= ) Click Highight” button to Fighight control e 1094,399 Sz
> | — — S < i "




ACTION BASED TESTING LANGUAGE (ABTL) QUICK REFERENCE CARD

Variables
There are two types of variables in TestArchitect: global variable and local variable.
Local variables are variables that are declared within a Global variables are variables with global scope. They can be accessed
specific section of test modules or actions. They are throughout all test modules and invoked actions within one execution run.
initiated within a limited scope, and can only be seenin a
particular section.
Action to define a local variable, and assign a value to it Action to define a local variable, and assign a value to it
17 name value 17 name value
18 | local variable b 999 18 | global variable a 1234
15 Variable value 18 Variable value
20 variable value 20 variable value
21 |setvariable b 8?8 21 |setvariable a 5678
Variable value Variable value
Action to assign a value to an existing local or global variable Action to assign a value to an existing local or global variable

Expressions & Functions

An expression (prefixed by an expression indicator #) is any combination of literal values, variables, operators, operands and functions that
follows a set of rules, and which needs to be evaluated before it can be used.

A Function: A predefined, named formula that performs a specific opeartion and returns values needed by your test.

More information: testarchitect.logigear.com/onlinehelp/#TA_Automation/Topics/The_test_language_functions.html

15 | // declare local variables and initialize its value © 18: local variable [name:a] [value:Logigear Corporation]
18
Use two forward slashes to denote o comment. a-> Logigear Corporation
17 name value
18 |local variable a Logigear Corporation © 23:report [text:# left (a, 8)]
19
20 | // report the substring containing 8 characters from the left #left (a, 8)->Logigear
21 Arguments | Logigear
2 tet
23 |report £ left (g, 8) © 28: local variable [name:width] [value:20]
24 Function name width > 20
25 |// declare local variables and initialize its value
26 © 29: local variable [name:height] [value:40]
27 name value .
28| local variable width 20 height2a0
__ 2 |localvariable height 40 & 32: report [text:#" The area of the rectangle is: " & width* height]
30
31 text #" The area of the rectangle is: " & width* height->The area of the rectangle is: 800
o is: " & width® hei
zi report The area of the rectangle is: " 8 width? height The area of the rectangle is: 800

Expression indicator Expression operators




ACTION BASED TESTING LANGUAGE (ABTL) QUICK REFERENCE CARD

15 year month day weekday
o e - 16 | get system date >>y >>m >>d >>wd
C O n d I.I-I O n O | O C 1- I O n S :: condition © 16: [13:50:24/ 15ms]  get system date [year: >> y] [month: >>m)] [day: >>d] [weekday: >>wd]
;: if 2y="2018" y > 2016
: : . . = o ) _ m-> 12
Begin a block of action lines which are executed only 2 fupot The FFAWorld Cop 218 will e heldin Russia
d-> 13
H H 1+ H i 24 condition
if a specified condition is satisfied. Al e > Tuestay
27 text M i - - "
2% | report The UEFA Euro 2020 will be held in thirteen cites in thirteen different European countries during the summer of 2020, ©19: if [condition: # y ="2018"]
; endif #y="2018" -> false
3
321> condition © 25: elseif [condition: #y="2020"]
33 |if #d=24 and m=12
34 #y="2020" -> false
35 text
% | report Merry Christmas. 30: endif
37
38 |endif © 33: if [condition: # d=24 and m=12]
E
0 condition # d=24 and m=12 -> false
a1 i 2wd ="Saturday” or wd="Sunday”
2 38: endif
43 text
4| report Happy weekend. © 41: if [condition: #wd ="Saturday" or wd="Sunday"]
45
% _|else #wd ="Saturday" or wd="Sunday" -> false
47 text
48| report Have a nice day. 46: else
89
50 |endif 48: Have a nice day.
50: end if
Loop actions
A loop is a statement, or set of statements, that are repeated for a specified number of times or until some condition is met
. . 15 name value
Wh I | e / e n d Wh I I e 16 local variable temp count 1 © 16: [14:07:29/ 15ms) local variable [name: temp count] [value: 1]
17 temp count -> 1
. . . A 18 condition to run © 19: while [condition to run: #temp count < 3]
Denotes the beginning of a while/end while loop. . . #temp count < 3 -> true
" ) ) 19 | while #temp count < 3
Evaluates a conditional expression to determine % -~ WHILE LOOP, START -—
whether execution is to continue with the action lines 1 text =
. . . . . ’ © 25: [14:07:29/ 1ms] setvariable [variable: temp count] [value: Ztemp count + 1]
dlrectly below it, or with the lines following the 2 |report #temp count oy et 2
matching end while. 23 emp count > 2
24 variable value © 28: end while
25 |setvariable temp count #temp count + 1 = WHILE LOOP, NEXT CYCLE —
26 22: 2
27 © 25: [14:07:29/ 1ms] setvariable ([variable: temp count] [value: #temp count + 1]
28 end while #temp count +1-> 3
temp count -> 3
29

© 28: end while

- WHILE LOOP, DONE -




ACTION BASED TESTING LANGUAGE (ABTL) QUICK REFERENCE CARD

Loop actions

Repeat / until

Denotes the beginning of a repeat/until loop.

15 name value © 16: [14:12:30/ 1ms] local variable  [name: temp count] [value: 1]
. temp count > 1
16 |local variable temp count 1
© 18: repeat
17 — REPEAT LOOP, NEXT CYCLE —
18 | repeat 21
19 ©24:[14:12:30/ 1ms]  setvariable ~ [variable: temp count] [value: # temp count + 1]
= _ £ temp count + 1> 2
text temp count > 2
21 T€P°ﬁ #temp count ©27:[14:12:30/ 1ms] until  [condition to stop: Stemp count = 3]
22 stemp count = 3 > false
3 variable value —~ REPEAT LOOP, NEXT CYQLE
a2
24 | setvariable temp count #temp count + 1 X
© 24: [14:12:30/ 1ms]  setvariable [variable: temp count] [value: # temp count + 1]
25 2 temp count +1-> 3
26 condition to stop temp count > 3
27 Untll #temp COunt = 3 © 27: [14:12:30/ 1ms] until  [condition to stop: #temp count = 3]
stemp count = 3> true
28 - REPEAT LOOP, DONE —
Symbol Operation Priority Symbol Operation Priority
= equal o 4 not Value is TRUE if its operand is FALSE 5
<=, 1= not equalto 4 and Value is TRUE if and only if both sides of the and operator are TRUE 6
> greater than 4 or Value is TRUE if either side of the or operator is TRUE 7
»= greater than or equal to 4
< less than 4
=< less than or equal to 4

Settings

Settings are used to steer the automation process. They control how your action lines are handled by the TestArchitect interpreter or automation.
More information: testarchitect.logigear.com/onlinehelp/#TA_Automation/Topics/bia_setting.htm/

7 |INITIAL Setting up

8

9 // set the maximum wait time for a control or HTML element to become available or, depending upon the action involved, unavailable.
10

il setting value

12 | setting object wait 30

13




ACTION BASED TESTING LANGUAGE (ABTL) QUICK REFERENCE CARD

Dynamic identifiers

A value for a window/control argument which, instead of using a TA name, directly identifies a Ul element through its TA class and TA property values.
More Information: testarchitect.logigear.com/onlinehelp/#TA_Help/Topics/The_test_language_dynamic_identifiers.html/

15 | // Enterthe name "john" into the 'User name' field 17: [11:06:31/ 453ms] enter  [window: login] [control: [ta class = textbox , description = user name]] [value: john]
16 window control value

1; enter login o s = tebor, descpton = wernamg] - john 21:[11:06:32/ 187ms] click  [window: [title = Car Rental-Login]] [control: [ta class = button , caption = Login]]

A dynamic identifier is surrounded by a pair of square brackets.
1/ Click the 'Login' button

i

© 25: [11:06:32/ 31ms]  check window not exists  [window: [title = Car Rental-Login]]

20 window control

21 |click [title = Car Rental-Login]  [ta class = button,, caption = Login]

2 check window not exists

23 |//1f successful, 'Login' window disappears expected (ttle = Car Rental-Login] not exists
% window recorded [title = Car Rental-Login] not exists
25 |checkwindownotexists  [title = Car Rental-Login] result passed

Wildcards

A specific regular expression pattern that can be used to substitute for any other character or characters in a string, allowing for flexibility in pattern matching.
More Information: testarchitect.logigear.com/onlinehelp/#TA_Tutorials/Topics/Wildcards.html

16 |//Clicka tedt whose sting value begins vith Car -3 19: [14:14:37/ 546ms] dlick  [window: scrumboard) [contral: [ta class=, text={Car - 5.%}]
17 Wildcards ".*", represent “matching any contiguous set of characters".
18 window control

19 | click scrumboard [ta class=li, text= {Car- 5.*}]

Checks

Any point in a test procedure in which any type of check action exists. check actions are the only actions that register pass/fail results.

Example y . . .
P © 21: check control exists  [view cars] [available car]
Car charge
* Currently available cars: 6 < Check that .This check control
: control exists X
* Car charge per day: 90.0 expected available car
recorded control found
Action Lines
1 result passed
20 window control
21 |check control exists view cars available car
22




ACTION BASED TESTING LANGUAGE (ABTL) QUICK REFERENCE CARD

Error handling & recovery

TestArchitect provides a number of mechanisms to support error handling and recovery to allow for tests to continue to run after encountering unanticipated errors, warnings or test failures.

on error

Specify the execution path to take in the event of an error.
For example, in the event of an error, you would like TestArchitect to abandon the current test case and continue with the next test case in the same test module, specify the ‘exit test case’ argument in the
test procedure.

7 | INmAL Setting up. © INITIAL, Setting up
B 10:0n error [behavior:exit test case]
B behavior
=1 on error exit test case © Test case: TC 01, User s able to select car
o Error(s) at line(s)
12 |TesTCASE 0] Usesablelobelecioay 13: test objective TO 01 - User is able to select car
13| test objective 1001 User is able to select car
14 © (€) 16 select car [car:Compact/Toyota Prius] [number of cars:1]
as; car number of cars (the remaining lines of the test case will be skipped)
16| select car Compact/Toyot... 1
7
18 car © (€) 9: click tree node [window:car selection) [tree:car select tree] [node path:# “Car Types/" & car]
19| check car selected Compact/Toyota Prius
= i pact/Toyota Priu #"Car Types/" & car->Car Types/Compact/Toyota Prius
21 ERROR: No window found matching "car selection" within the timeout of "20" seconds.
22 |TeSTCASE TC02 User is able to search order Please check the interface definition for "car selection”, or set a longer timeout with the “window wait" setting.
23| test objective 1002 User is able to search order
= <<<stopping action, returning to test module>>>
28] value © Test case: TC 02, User s able to search order
h RV
zi search order cvo 23: test objective TO 02 - User s able to search order
B field name expected value ® 26: search order [value:RCVO]
29| check order informatio First Neme Johi
= orderinformation " ohn ® 25: check order information [field name:First Name] [expected value:John]

on error action

Specify the action to be invoked in the event of an error.
As an example, the following is a simple error handler that, when called, merely captures the screen at the time of the error, saving it to a designated jpg file

7 |INITIAL Setting up © [13:48:58/ 93ms] INITIAL, Setting up

8

9 | //setnotice level to 0 to show no warning message in case of Ul navigational problem 11:[13:48:58/ 1ms]  set notice level [level: 0]

10 level

11 | set notice level 0 15: [13:48:58/ 93ms] on error action  [action: error handler]

12

13 | //specify the action to run when error happens © [13:48:58/ 10359m:195:245ms] Test case: TC 01, User is able to view order

14 action Failed at line(s): 25

15| on error action Error(s) at ne(s): 22

16

7 19: test objective: TO 01 - User is able to view order

18 | TEST CASE TCO1 User is able to view order o . ) )

19 | test objective Toor User is able to view order © (E) 22: [13:48:58/ 205:296ms] click [window: welcome] [control: view orders]

20

21 window trol ERROR: No matching UI object found for "view orders" within the timeout of "20" seconds. Please check
" mncew contro the interface definition for "view orders", or set a longer timeout with the "object wait" setting.

22 | click welcome view orders

23

24 window Executing action "error handler', as specified in 'on error action'.

25 | check window exists view orders

26 >>> EXECUTED ACTION: error handler <<<

© 22: [NA/ 10358m:38s:747ms]  error handler

E ACTION DEFINITION error handler

2 6: [13:49:18/ 125ms] capture screen  [image location: D:\Images\failure.jpg]
3| //Capture screen

2 @ 11: [13:49:18/ 25:340ms]  close application [window: welcome]

s image location

6 | capture screen D:\Images\failure.jpg © 25: [13:49:20/ 20s:202ms]  check window exists ~ [window: view orders]
7

8 | // close application check window exists

9 expected view orders exists

10 window recorded view orders not exists

11 | close application welcome result failed




ACTION BASED TESTING LANGUAGE (ABTL) QUICK REFERENCE CARD

Error handling & recovery

on failure action

Specify the action to be invoked in the event of a check failure from any check-type action.
The following example, when called, captures the screen in the event of a check failure, saving it to a jpg file

7 |INmac Setting up. © [13: / 437ms] INITIAL, Setting up
B
9 action 10: [13:57:53/ 437ms]  on failure action [action: failure handler]
10| on failure action failure handler
1 © [13:57:53/ 10367m:565:716ms] Test case: TC 01, User is able to login
12| TesT CASE Tco1 Useris able to login Failed at lne(s): 21
13| test objective ToO0L User s able to login § i} .
= 13: test objective: TO 01 - User is able to login
15 username password @ 16: [13:57:53/ 1s- i . R
16 | login john 16: [13:57:53/ 1s:467ms] login  [username: john] [password:]
17
18 | //check if there is a Welcome link in Home page. © 21: [13:57:55/ 20s:779ms]  check control exists [window: home] [control: welcome]
1 check control exists
2 window control N
. expected welcome exists
check control exists welcome y
recorded welcome not exists
result failed

/ACTION DEFINITION failure handler

Executing action 'failure handler', as specified in 'on failure action'.

>>> EXECUTED ACTION: failure handler <<<

//Capture screen on failure

© 21: [NA/ 10367m:345:470ms]  failure handler
image location

capture screen DAlmages\failurejpg

7: [13:58:16/ 453ms]  capture screen  [image location: D:\Images\failure.jpg]

Data set

A Data set is a collection of data. It contains rows of values that can be retrieved by an automated test and acted on sequentially.

Data sets are stored in the Data subtree of the TestArchitect explorer tree, and can be A data set worksheet typically resembles the following.
organized into folders and subfolders.

£, CarRental % |
Explorer 3¢ I Datalines | Informaton |
A 5 c 5 &
— TestArchitect CarRental
[=}Bglg SampleRepository (localhost) [administrator] = duration countrypickup  statepickup  eity pickup
- row 3 Canada British Columbia Kamloops
=-{F] CarRental s row 1 United States Texs Houston
K Tests [ 6 |row 2 United States Florida Brossard
H E es row s United States California San Diego
row 4 Manit his
§ Data [ 8 |re Canada anitoba Dauphin
("JCar Rental | fiter tong duration >= 4
Actions —
Sample test script: Sample test result:
T 1a | @ 18: use data set [name: /Car Rental] [filter: long
q
15 //Use a data set with a specified filter
16 21: San Diego
17 name filter
@ 23: repeat for data set
18| use data set /Car Rental long P
19 21: Dauphin
20 text
21 |report # city pickup. © 23: repeat for data set
22
23 | repeat for data set - end of cycle
L 24 | @ 28: use data set [name: /Car Rental] [filter: duration >= 4]
25 //Use a data set with a filter expression directly within the ‘filter' argument
26 31: San Diego
27 name filter
28 use data set /Car Rental duration >= 4 @ 33: repeat for data set
2 31: Dauphin
30 text
31| report # city pickup © 33: repeat for data set
32
33 | repeat for data set === end of cycle




