LogiGear

ACTION BASED TESTING LANGUAGE (ABTL)

QUICK REFERENCE CARD

Variables

There are two types of variables in TestArchitect: global variable and local variable.

Local variables are variables that are declared within a
specific section of test modules or actions. They are
initiated within a limited scope, and can only be seenin a
particular section.

Action to define a local variable, and assign a value to it

17 name value

18 |local variable b 999

19 Variable value
20 variable value

21 |setvariable b 888

Variable value

Action to assign a value to an existing local or global variable

Expressions & Functions

Global variables are variables with global scope. They
can be accessed throughout all test modules and
invoked actions within one execution run.

Action to define a local variable, and assign a value to it

17 name value
18 | global variable a 1234
19 Variable value
20 variable value
21 |setvariable a 5678

|
Variable value

Action to assign a value to an existing local or global variable

An expression (prefixed by an expression indicator #) is any combination of literal values, variables, operators,
operands and functions that follows a set of rules, and which needs to be evaluated before it can be used.

A Function: A predefined, named formula that performs a specific opeartion and returns values needed by your test.
More information: testarchitect.logigear.com/onlinehelp/#TA_Automation/Topics/The_test_language_functions.htm/

15 | // declare local variables and initialize its value

6 |\
Use two forward slashes to denote a comment.
17 name value
18 |local variable a Logigear Corporation
19

20 | // report the substring containing 8 characters from the left

Function name
25 |// declare local variables and initialize its value

26

27 name value

28 |local variable width 20

29 |local variable height 40

30

31 text

32 |report #" The area of the rectangle is: " & width* height

33

Expression indicator Expression operators

21 Arguments
2 tet /]

23 | report # left (g, 8)

24

© 18: local variable [name:a] [value:Logigear Corporation]
a -> Logigear Corporation

© 23:report [text:# left (3, 8)]

left (a, 8)->Logigear

Logigear

© 28: local variable [name:width] [value:20]
width -> 20
© 29: local variable [name:height] [value:40]

height -> 40

#" The area of the rectangle is: " & width* height->The area of the rectangle is: 800

The area of the rectangle is: 800

LogiGear

ACTION BASED TESTING LANGUAGE (ABTL)

QUICK REFERENCE CARD

Conditional actions

Begin a block of action lines which are executed only if a specified condition is satisfied.

15 year month day weekday
16 | get system date >y >>m >>d >>wd
17

18 condition

19 |if #y="2018"

20

21 text

22 | report The FIFA World Cup 2018 will be held in Russia
23

24 condition

25 |elseif #y="2020"

26

27 text

28 | report The UEFA Euro 2020 will be held in thirteen cities in thirteen different European countries during the summer of 2020.
2

30 |endif

31

32 condition

33 |if #d=24 and m=12

34

35 text

36 |report Merry Christmas.

37

38 |endif

39

40 condition

41 |if #wd ="Saturday" or wd="Sunday"

42

43 text

44 |report Happy weekend.

45

46 |else

47 text

48 |report Have a nice day.

)

50 |endif

Loop actions

© 16: [13:50:24/ 15ms] get system date [year: >> y] [month: >>m] [day: >>d] [weekday: >>wd]
y -> 2016
m -> 12
d-> 13
wd -> Tuesday
© 19: if [condition: # y ="2018"]
#y="2018" -> false
© 25: elseif [condition: #y="2020"]
#y="2020" -> false
30: endif
© 33: if [condition: # d=24 and m=12]
d=24 and m=12 -> false
38: endif
© 41: if [condition: #wd ="Saturday" or wd="Sunday"]
#wd ="Saturday" or wd="Sunday" -> false
46: else
48: Have a nice day.

50: end if

A loop is a statement, or set of statements, that are repeated for a specified number of times or until some condition

is met

while / end while

Denotes the beginning of a while/end while loop. Evaluates a conditional expression to determine whether execution
is to continue with the action lines directly below it, or with the lines following the matching end while.

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

name value
local variable temp count 1
condition to run
while #temp count < 3
text
report #temp count
variable value
set variable temp count #temp count + 1
end while

© 16: [14:07:29/ 15ms] local variable [name: temp count] [value: 1]
temp count -> 1
© 19: while [condition to run: #temp count < 3]
Ftemp count < 3 -> true
- WHILE LOOP, START -
22: 1
© 25:[14:07:29/ 1ms] setvariable [variable: temp count] [value: #temp count + 1]
Ftemp count +1 -> 2
temp count -> 2
© 28: end while
- WHILE LOOP, NEXT CYCLE -
22: 2
© 25: [14:07:29/ 1ms] setvariable [variable: temp count] [value: #temp count + 1]
#temp count +1->3
temp count -> 3
© 28: end while

- WHILE LOOP, DONE -

LogiGear
ACTION BASED TESTING LANGUAGE (ABTL)

QUICK REFERENCE CARD

Loop actions

repeat / until

Denotes the beginning of a repeat/until loop.

© 16: [14:12:30/ 1ms] local variable [name: temp count] [value: 1]

15 name value
. temp count -> 1
16 |local variable temp count 1
© 18: repeat

17 -—- REPEAT LOOP, NEXT CYCLE —

18 | repeat a1

19 © 24:[14:12:30/ 1ms] setvariable [variable: temp count] [value: 2 temp count + 1]

. # temp count + 1 -> 2

20 text temp count -> 2

21 prOl‘t #temp count © 27:[14:12:30/ 1ms] until [condition to stop: #temp count = 3]

22 Ztemp count = 3 -> false

23 va ” a b [e va I ue -—- REPEAT LOOP, NEXT CYCLE —

21: 2
24 | setvariable temp count #temp count + 1))
© 24:[14:12:30/ 1ms] setvariable [variable: temp count] [value: # temp count + 1]

25 #temp count +1->3

2% condition to stop temp count -> 3

27 Ul‘ltil #temp count = 3 © 27: [14:12:30/ 1ms] until [condition to stop: #temp count = 3]

#temp count = 3 -> true
28 -— REPEAT LOOP, DONE -—
Symbol Operation Priority Symbol Operation Priority

= equal o 4 not Value is TRUE if its operand is FALSE 5
<=, 1= not equalto 4 and Value is TRUE if and only if both sides of the and operatorare TRUE 6
> greater than 4 or Value is TRUE if either side of the or operator is TRUE 7
»= greater than or equal to 4
< less than 4
=< less than or equal to 4

Settings

Settings are used to steer the automation process. They control how your action lines are handled by the
TestArchitect interpreter or automation.
More information: testarchitect.logigear.com/onlinehelp/#TA_Automation/Topics/bia_setting.html

7 | INITIAL Setting up

8

9 // set the maximum wait time for a control or HTML element to become available or, depending upeon the action involved, unavailable.
10

11 setting value

12 | setting object wait 30

13

ACTION BASED TESTING LANGUAGE (ABTL)

QUICK REFERENCE CARD

Dynamic identifiers

A value for a window/control argument which, instead of using a TA name, directly identifies a Ul element through its
TA class and TA property values.
More Information: testarchitect.logigear.com/onlinehelp/#TA_Help/Topics/The_test_language_dynamic_identifiers.htm/

15 | // Enterthe name "john" into the 'User name' field 17: [11:06:31/ 453ms] enter [window: login] [control: [ta class = textbox , description = user name]] [value: john]
16 window control value
17 I logi ta class = textbox, description = joh

ener ogn @ oK, description USEW jon 21: [11:06:32/ 187ms] click [window: [title = Car Rental-Login]] [control: [ta class = button , caption = Login]]

18 A dynamic identifier is surrounded by a pair of square brackets.
19 |// Click the 'Login' button

© 25: [11:06:32/ 31ms] check window not exists [window: [title = Car Rental-Login]]

20 window control

2 | click [title = Car Rental-Login] ~[ta class = button, caption = Login]

2 check window not exists

2 |//1f successful, Login' window disappears expected (ttle = Car RentahLogin] not exits
% window recorded [title = Car Rental-Login] not exists
25 | check window not exists [title = Car Rental-Login] result passed

Wildcards

A specific regular expression pattern that can be used to substitute for any other character or characters in a string,
allowing for flexibility in pattern matching.
More Information: testarchitect.logigear.com/onlinehelp/#TA_Tutorials/Topics/Wildcards.html

16 |//Click atext whose string value begins with ‘Car - 5' 19: [14:14:37/ 546ms] click [window: scrumboard] [control: [ta class=li, text={Car - 5.*}]]

17 Wildcards ".*", represent “matching any contiguous set of characters".

N

18 window control
19 | click scrumboard [ta class=li, text= {Car - 5.*]]

Checks

Any point in a test procedure in which any type of check action exists. check actions are the only actions that register
pass/fail results.

Example - . . .
P © 21: check control exists [view cars] [available car|
Car charge
e < Check that this check control
control exists .
* Car charge per day: 90.0 expected available car
recorded contral found
Action Lines
5 result passed
20 window control
21 |check control exists view cars available car
22

LogiGear

ACTION BASED TESTING LANGUAGE (ABTL)

QUICK REFERENCE CARD

Error handling & recovery

TestArchitect provides a number of mechanisms to support error handling and recovery to allow for tests to continue
to run after encountering unanticipated errors, warnings or test failures.

on error

Specify the execution path to take in the event of an error.

For example, in the event of an error, you would like TestArchitect to abandon the current test case and continue with
the next test case in the same test module, specify the ‘exit test case’ argument in the test procedure.

7

8

9

10
11
12
13
14
15
16
17
138
19
20
21

BB|BNR|NRBIN

INIMAL

on error

TEST CASE

test objective

select car

check car selected

TEST CASE

test objective

search order

check order information

Setting up

behavior
exit test case

TCOo1
TO 01

car
Compact/Toyot...

car
Compact/Toyota P
TC02

TO 02

value
RCVO

field name
First Name

on error action

Specify the action to be invoked in the event of an error.

User is able to select car
User is able to select car

number of cars

1

rius

User is able to search order

User is able to search order

expected value
John

© INITIAL, Setting up

10: on error [behavior:exit test case]

© Test case: TC 01, User is able to select car
Error(s) at line(s):16:9

13: test objective TO 01 - User is able to select car
© (E) 16: select car [car:Compact/Toyota Prius] [number of cars:1]

(the remaining lines of the test case will be skipped)

© (E) 9: click tree node [window:car selection] [tree:car select tree] [node path:# "Car Types/" & car]
"Car Types/" & car->Car Types/Compact/Toyota Prius

ERROR: No window found matching "car selection” within the timeout of "20" seconds.
Please check the interface definition for "car selection", or set a longer timeout with the "window wait" setting.

<<<stopping action, returning to test module>>>
© Test case: TC 02, User is able to search order
23: test objective TO 02 - User is able to search order
® 26: search order [value:RCVO]

@ 29: check order information [field name:First Name] [expected value:John]

As an example, the following is a simple error handler that, when called, merely captures the screen at the time of the
error, saving it to a designated jpg file

7

INITIAL

8

9

10

11

set notice level

12

13

14

15

on error action

16

17

18

TEST CASE

19

test objective

20

21

22

click

23

24

25

check window exists

26

VO INO 0| bW N =

-
o

-
-

//Capture screen

capture screen

// close application

close application

Setting up

level

0

action

//set notice level to 0 to show no warning message in case of Ul navigational problem

//specify the action to run when error happens

error handler

TCO01 User is able to view order
TOO01 User is able to view order
window control

welcome view orders

window

view orders

image location
D:\Images\failure.jpg

window
welcome

© [12:48:58/ 93ms] INITIAL, Setting up
11:[13:48:58/ 1ms] set notice level [level: 0]

15: [13:48:58/ 93ms] on error action [action: error handler]

© [13:48:58/ 10359m:195:245ms] Test case: TC 01, User is able to view order
Failed at line(s): 25
Error(s) at line(s): 22
19: test objective: TO 01 - User is able to view order

© (E) 22: [13:48:58/ 20s:296ms] click [window: welcome] [control: view orders]

ERROR: No matching UI object found for "view orders" within the timeout of "20" seconds. Please check

the interface definition for "view orders", or set a longer timeout with the "object wait" setting.
Executing action 'error handler', as specified in 'on error action'.

>>> EXECUTED ACTION: error handler <<<
© 22: [NA/ 10358m:38s:747ms] error handler
6:[13:49:18/ 125ms] capture screen [image location: D:\Images\failure.jpg]

@ 11: [13:49:18/ 25:340ms] close application [window: welcome]

© 25: [13:49:20/ 20s:202ms] check window exists [window: view orders]

check window exists
expected view orders exists
recorded view orders not exists
result failed

LogiGear
ACTION BASED TESTING LANGUAGE (ABTL)

QUICK REFERENCE CARD

Error handling & recovery

on failure action

Specify the action to be invoked in the event of a check failure from any check-type action.
The following example, when called, captures the screen in the event of a check failure, saving it to a jpg file

7 | INITIAL Setting up © [13:57:53/ 437ms] INITIAL, Setting up
8
9 action 10: [13:57:53/ 437ms] on failure action [action: failure handler]
10 | on failure action failure handler
11 © [13:57:53/ 10367m:56s:716ms] Test case: TC 01, User is able to login
12 | TEST CASE TCOL User is able to login Failed at line(s): 21
13 | test objective TOO01 User is able to login o 3 .
12 13: test objective: TO 01 - User is able to login
15 username password ® egien) 1 logi ioh
16 |login john 16: [13:57:53/ 1s:467ms] login [username: john] [password:]
17
18 | //check if there is a Welcome link in Home page. © 21:[13:57:55/ 20s:779ms] check control exists [window: home] [control: welcome]
5 check control exists
20 window control .
. expected welcome exists
21 | check control exists home welcome .
recorded welcome not exists
22 .
result failed
19 OND O d
Executing action 'failure handler', as specified in 'on failure action'.
2
3 >>> EXECUTED ACTION: failure handler <<<
4 | //Capture screen on failure
5 © 21: [NA/ 10367m:34s:470ms] failure handler
6 image location § X i i
7 | capture screen D:\Images\failurejpg 7:[13:58:16/ 453ms] capture screen [image location: D:\Images\failure.jpg]

Data set

A Data set is a collection of data. It contains rows of values that can be retrieved by an automated test and acted on

sequentially.
Data sets are stored in the Data subtree of the A data set worksheet typically resembles the following.
TestArchitect explorer tree, and can be organized into
folders and subfolders.
£, CarRental % I
Explorer "
Xp' b4 Datalines | Information |
A B C D E
—# TestArchitect Y Da
. i i o 3
E}m SampIEREDOSItory (IocalhOSt) [admlnIStrator] 3 duration country pickup state pickup city pickup
.. 4 |row 3 Canada British Columbia Kamloops
ET:I B Car Rental 5 |row 1 United States Texas Houston
ol 6 |row 2 United States Florida Brossard
Tests
H 7 |row 5 United States California San Diego
E-}g Data 8 |row 4 Canada Manitoba Dauphin
: : 9
: g - r REn 10 name criterion
H y - 11 | filter long duration >= 4
-, Actions 2
Sample test script: Sample test result:
14 @ 18: use data set [name: /Car Rental] [filter: long]
15 //Use a data set with a specified filter
T 21: San Diego
17 name filter
18 | use data set /Car Rental leng @ 23: repeat for data set
19 21: Dauphin
20 text
21 |report # city pickup © 23: repeat for data set
22
23 |repeat for data set --- end of cycle
2 @ 28: use data set [name: /Car Rental] [filter: duration >= 4]
25 | //Use a data set with a filter expression directly within the ‘filter' argument
26 31: San Diego
27 name filter
28 |use data set /Car Rental duration >= 4 © 33: repeat for data set
;z ot 31: Dauphin
eX
31 |report # city pickup © 33: repeat for data set
32
33 |repeatfor data set ---- end of cycle

